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Abstract. We consider an integrable SU(2)-invariant model consisting of a Heisenberg chain
of spinsS (the Takhtajan–Babujian model) interacting with a finite concentrationc of impurity
spinsS′. The thermodynamic Bethe-ansatzequations are stated for this model. The ground-state
equations are analysed as a function ofc, the magnetic field and the coupling parameter (impurity
rapidity p0) of the impurities to the lattice. In zero field the ground state is a singlet for finite
c, but becomes non-Fermi-liquid-like asc → 0 for S′ < S. Two rapidity bands play a role at
T = 0 corresponding to strings of length 2S and 2S′, respectively. The van Hove singularities
of the empty bands define two critical fields,Hc(c, p0) andHs(c, p0), at which the susceptibility
diverges.Hc tends to zero asc → 0 giving rise to a crossover from non-Fermi-liquid behaviour
for H > Hc to Fermi-liquid-like behaviour forH < Hc. The spectrum of elementary excitations
and the finite-size corrections to the ground-state energy are calculated, and used to discuss the
asymptotic behaviour of spin–spin correlation functions for long times and large distances.

1. Introduction

There has recently been interest in integrable spin chains containing impurity spins. For the
host we consider the Takhtajan–Babujian model [1–3] which is the integrable SU(2)-invariant
generalization of the standard Heisenberg chain of spins 1/2 to higher spinsS. The model
consists of an interaction between spins on nearest-neighbour sites, which has the form of a
polynomial in(Si ·Si+1) of order 2S. An isolated impurity of spinS ′ can either be located on
themth link of the Heisenberg chain [4–6] coupled to both neighbouring sites or at the end of
an open chain [7] coupled only to the first or last site of the chain. The interaction between the
impurity and the chain is of a special type, constructed such that the model remains integrable
(and SU(2) invariant) [4–6].

The model and its solution are constructed from the scattering matrices via the quantum
inverse scattering method. The diagonalization of the transfer matrices then yields the Bethe-
ansatzequations for the spin chain with impurity. For the embedded impurity the condition of
integrability leads to a phase shift for forward scattering, but no reflection scattering amplitude.
In the case of an impurity in an open-ended chain, on the other hand, the boundary acts as a
perfect backscatterer with vanishing transmission. In this case the effects of the boundary and
the impurity have to be separated. The magnetic properties of the impurity for small fields do
not depend on the location (on a link or at the open end) of the impurity and for large fields the
asymptotically free spin is recovered for both cases with the same ‘universal’ corrections [7].

Three situations have to be distinguished for the integrable spin chain with impurity [6,8,9]:
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(i) If S ′ = S the impurity is just one more site in the chain. TheT = 0 entropy vanishes for
all fields, giving rise to Fermi-liquid-like behaviour; i.e., the susceptibility is finite and the
specific heat is proportional toT .

(ii) If S ′ > S the impurity spin is only partially compensated atT = 0, leaving an effective
spin of S ′ − S that is weakly coupled to the chain. The entropy is singular, i.e.,
S(T = 0, H = 0) = ln[2(S ′ − S) + 1], andS(T = 0, H 6= 0) = 0. As a function
of T the remaining spin degeneracy gives rise to a Schottky anomaly at aboutT ≈ H and
the zero-field susceptibility diverges following a Curie law.

(iii) If S ′ < S the entropy has an essential singularity atT = H = 0, giving rise to critical
behaviour, i.e. power laws ofH andT , asH andT both tend to zero.

These properties are in close analogy with (i) the completely compensated, (ii) the under-
compensated and (iii) the overcompensated impurity spin situations in the multi-channel Kondo
problem [9–14].

This singular behaviour appears to be inconsistent with renormalization group studies [15],
which conclude that the only stable critical points correspond to an unperturbed (periodic) chain
and a chain with a break at the impurity site (the open-ended chain). Only the latter fixed point
may have a remnant impurity spin. A more detailed study of the system around the integrable
point in parameter space leads to the conclusion that the integrable impurity model corresponds
to a non-generic multi-critical point [16].

The situation of an embedded impurity has been extended to a finite concentrationc of
impurities (a Heisenberg chain of spins 1/2 with impurities of spinS ′) [17]. This adds one
more variable to the parameter space without destroying the integrability of the model. As
a function ofc it is found that the behaviour for finitec is different from that of the isolated
impurity; that is, the system is a two-component Luttinger liquid and the ground state is a
singlet. This result is consistent with the conclusion reached from the renormalization group
flow diagram [16] that the isolated-impurity model corresponds to a multi-critical fixed point.
The mesoscopic corrections to the ground-state energy for the two-component Luttinger liquid
and the quantum interference pattern in persistent spin currents as a function of the electric field
flux (the Aharonov–Casher effect) have been discussed in reference [18]. This model is also
closely related to the chain of alternating spins proposed by de Vega and Woynarovich [19].

In this paper we extend the above results in several ways:

(a) An impurity rapidityp0 is introduced in analogy to Kondo impurities embedded into
Luttinger liquids. The parameterp0 allows one to continuously vary the coupling strength
of the impurities to the host [7,20–22].

(b) While in reference [17] we considered undercompensated impurities (S = 1/2,S ′ > 1/2),
here we focus on overcompensated impurities (S < S ′). This allows us to study the
crossover from Fermi-liquid to non-Fermi-liquid behaviour as a function ofc, p0 and the
magnetic fieldH .

(c) We discuss the spectrum of elementary excitations for the two-component Luttinger liquid
(finite c) and the gradual depopulation of the spinon bands as a function ofH and the
coupling parameterp0.

(d) We calculate the mesoscopic corrections to the ground-state energy and use them to
study the asymptotic behaviour of spin–spin correlation functions for long times and
large distances.

The rest of the paper is organized as follows. In section 2 we state the discrete Bethe-
ansatzequations diagonalizing the model, classify the states and obtain the integral equations
determining the thermodynamics and the ground state. The Hamiltonian for an isolated
impurity is discussed in the appendix. In section 3 we summarize the results for an isolated



The Heisenberg chain with impurities 4619

impurity (the generalization of reference [6] top0 6= 0). The ground-state properties forc 6= 0
are presented in section 4. The evolution of the dressed energy bands for the spinon strings is
discussed as a function ofH , and the magnetization and the critical fields (corresponding to
one-dimensional van Hove singularities) are obtained as a function ofc andp0. The conditions
for a crossover from Fermi-liquid to non-Fermi-liquid behaviour are analysed. In section 5
we address the spectrum of elementary excitations. The finite-size corrections to the ground-
state energy are calculated in section 6 and then used to obtain the critical exponents of the
asymptotics of the spin–spin correlation functions. Conclusions follow in section 7.

2. Bethe-ansatzequations

2.1. Vertex weights and the transfer matrix

As in references [1–6], the model is defined by the transfer matrix in terms of the vertex
weights. The vertex weight operatorR(λ) acting on the space of the tensor product of two
spinsS is defined by

SSR
12(λ) = −

2S∑
j=0

j∏
k=1

λ− k
λ + k

P j (1)

whereP j is a projector that selects the states with total spinj . Hence, if|l〉 is a state with
total spinl, thenP j |l〉 = δj,l|l〉 and

P j (x) =
2S∏
l=0
l 6=j

x − xj
xl − xj (2)

with xl = 1
2 l(l + 1)− S(S + 1) andx = S1 · S2. Hence,P j (x) is a polynomial of order 2S in

x. The vertex weights satisfy the triangular Yang–Baxter relation, so the model is integrable.
These vertex weights define the Babujian–Takhtajan model of spinS without impurities.

The weight of the vertex between the impurity of spinS ′ and the host spinS can be
constructed by a similar procedure. The result forS ′ = 1 and arbitrary spinS can be found in
reference [5]. We limit ourselves to presenting the vertex weight forS ′ = 1

2 and arbitrary spin
S [1–6]:

SσR
12(λ) = 1

2

(
1− 2λ

)
I1⊗ I2 + S1⊗ σ2 (3)

whereI denotes the identity and the vector Pauli matrices represent the spinS ′. This vertex
weight satisfies the triangular relation with equation (1), which is sufficient for the integrability
of the model.

We now introduce a standard monodromy matrixĴ (λ):

Ĵ (λ) = S0S1R
01(λ) S0S2R

02(λ) · · · S0SNR
0N(λ) (4)

where the matrix product is carried out in the(2S + 1)-dimensional auxiliary space denoted
by S0. (Note that since we construct an SU(2)-invariant model, the dimension of the auxiliary
space is irrelevant. Any value of the spinS0 yields the same result.) Associated with each
vertex weight is a spin, e.g.Si at the sitei, which is either a spinS or an impurity spinS ′. There
areNh spinsS andNi spinsS ′, with N = Nh +Ni being the total length of the chain. For an
impurity vertex weight we shift the argumentλ by the quantityp0, the impurity rapidity. In
principle we may apply a different argument shift to each impurity. We will briefly address
the consequences of a distribution of impurity rapidities in section 7.
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The trace over the ingoing and outgoingS0-lines yields the transfer matrixT (λ):

T (λ) = Tr0(Ĵ (λ)). (5)

The transfer matrices for different values of the spectral parameterλ commute, i.e., there
is a basis of states that diagonalizesT (λ) for all λ simultaneously. This also holds for any
distribution of impurity rapiditiesp0. The Hamiltonian, i.e. the energy associated with the
transfer matrix, is then constructed according to

H = d

dλ
ln T (λ)

∣∣∣∣
λ=0

. (6)

This procedure leads to the Babujian–Takhtajan Heisenberg chain [1–3] of spinsS forNi = 0
(the absence of impurities) and of spinS ′ for Nh = 0 (no host spins). The interaction Hamil-
tonian for an isolated impurity of arbitrary spinS ′ with p0 = 0 andS = 1/2 was derived in
reference [4], forS = 1 andp0 = 0 in reference [5] and for the general case (p0 = 0) it is
discussed in reference [6]. The construction of the Hamiltonian forp0 6= 0 is more involved
and has been carried out for related models in references [7,18,20–22]. A brief discussion is
given in the appendix.

The many-impurity Hamiltonian depends on the relative space distribution of the impurity
spins and has to be constructed for each particular configuration. For instance, if all impurities
are separated from each other by a distance of at least three lattice spaces, the Hamiltonian is just
the sum of those of the isolated impurities. In general there are a large number of Hamiltonians
(with different space distributions of impurities) corresponding to the same energy eigenvalue.
In this integrable model the energy eigenvalues do not depend on the relative positions of the
impurities. This peculiar property is the consequence of the integrability or equivalently of
the structure of the transfer matrix. Despite this ‘locality’ structure (lack of dependence on
distances and large degeneracy of space configurations), the many-impurity Hamiltonian leads
to a singlet ground state, in contrast to the single-impurity Hamiltonian for which the ground
state is degenerate. This model is related to the translationally invariant lattice of alternating
spins 1/2 andS (c = 1/2) with second-next-nearest neighbour interactions considered by
de Vega and Woynarovich [19].

2.2. Bethe-ansatz equations

The simultaneous diagonalization of the transfer matrices leads to the Bethe-ansatzequations.
Following the standard procedure outlined elsewhere [1–6] we obtain(

3j + iS

3j − iS

)Nh (3j − p0 + iS ′

3j − p0 − iS ′

)Ni
= −

M∏
l=1

3j −3l + i

3j −3l − i
(7)

wherej = 1, . . . ,M. The3n are the spin rapidities which are related to the wavenumbers of
the magnons. The energy and the magnetization are given by

E = −J Nh
N

M∑
l=1

S

32
l + S2

− J Ni
N

M∑
l=1

S ′

(3l − p0)2 + S ′2

Sz =
(
NhS +NiS

′)−M. (8)

The concentration of impurities is defined asc = Ni/N andNh/N = 1− c, whereN is
the total number of sites. Forc = 0 or c = 1 we recover the Bethe-ansatzequations for the
Babujian–Takhtajan Heisenberg chains of spinsS andS ′, respectively. Note that the Bethe-
ansatzequations, the energy and the magnetization are all symmetric under the exchange
of (Ni, S ′, p0) and(Nh, S,0), i.e. the interchange of the host and impurities. The energy has
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Nh+Ni terms that arise from theN factors of the transfer matrix of whichNh are host scattering
matrices andNi are impurity scattering matrices. This result is independent of the choice of
the dimension of the auxiliary spin spaceS0. Below we consider the symmetrized version of
the above equations, i.e. the case wherec/2 impurities have a forward rapidityp0 andc/2 have
a backward rapidity−p0. This does not require any further consideration, since the model is
integrable for any distribution of impurity rapidities.

2.3. Thermodynamics

In the thermodynamic limit the solutions of equation (7) lie in the complex plane and form
strings of length(n− 1) [3–6,23]:

3
n,α
j = 3n

j + i(n + 1− 2α)/2 α = 1, . . . , n (9)

where3n
j is a real parameter representing the motion of the centre of mass of the string. The

length of the string is in principle arbitrary,n = 1, 2, . . .. If ξn is the number of strings of
lengthn, then we must satisfy

M =
∞∑
n=1

nξn. (10)

In general, a string excitation of ordern represents a bound-magnon state ofn magnons,
although exceptions have been found [24] in which string states do not correspond to bound
magnons.

The rapidities satisfy Fermi statistics and their occupation is most conveniently described
in terms of dressed energies,εn(3), which enter the Fermi distribution function. In thermal
equilibrium they satisfy the following integral equations [3–6,23]:

εm(3) = T
∫

d3′ G0(3−3′) ln
{[

1 + exp(εm−1(3
′)/T )

][
1 + exp(εm+1(3

′)/T )
]}

− Jπ(1− c)G0(3)δm,2S − Jπc 1
2 [G0(3− p0) +G0(3 + p0)] δm,2S ′ (11)

whereG0(3) = [2 cosh(π3)]−1. Equations (11) are the thermodynamic Bethe-ansatzequ-
ations, which are only complete with the asymptotic field boundary condition

lim
m→∞

εm

m
= H. (12)

The free energy of the system is given by

F(H, T ) = F0 −NT (1− c)
∫

d3 G0(3) ln
[
1 + exp(ε2S(3)/T )

]
− NT c

∫
d3 1

2 [G0(3− p0) +G0(3 + p0)] ln
[
1 + exp(ε2S ′(3)/T )

]
(13)

whereF0 is the ground-state energy in zero magnetic field:

F0 = 1
2JN(1− c)2

[
ψ( 1

2)− ψ( 1
2 + S)

]
+ JNc(1− c)Re

[
ψ( 1

2 + |S − S ′| + i 1
2p0)− ψ( 1

2 + S + S ′ + i 1
2p0)

]
+ 1

4JNc
2 Re

[
ψ( 1

2) +ψ( 1
2 + ip0)− ψ( 1

2 + S ′)− ψ( 1
2 + S ′ + ip0)

]
. (14)

ψ is the digamma function and Re denotes the real part.
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2.4. Ground-state equations

The ground-state integral equations are obtained in the limitT → 0. From equations (11)
we have that asT → 0 only ε2S andε2S ′ can become negative. Only states with negative
dressed energy are populated. After some algebra we arrive at the following coupled integral
equations:

ε2S(3) +
∫
ε2S<0

d3′ K2S,2S(3−3′) ε2S(3
′)

+
∫
ε2S′<0

d3′ K2S,2S ′(3−3′)ε2S ′(3
′) = 2SH − πJg2S(3)

ε2S ′(3) +
∫
ε2S<0

d3′ K2S ′,2S(3−3′)ε2S(3
′)

+
∫
ε2S′<0

d3′ K2S ′,2S ′(3−3′)ε2S ′(3
′) = 2S ′H − πJg2S ′(3)

(15)

where the integration kernels are given by

Kn,n′(3) = an+n′(3) + 2
pn,n′∑
l=1

an+n′−2l(3) + a|n−n′|(3) (16)

with an(3) = n/(2π)/[32 + (n/2)2], a0 ≡ 0 andpn,n′ = min(n, n′) − 1. The driving terms
are

g2S(3) = (1− c)
2S∑
l=1

a4S+1−2l(3)

+ 1
2c

2 min(S,S ′)∑
l=1

[
a2S+2S ′+1−2l(3− p0) + a2S+2S ′+1−2l(3 + p0)

]
g2S ′(3) = (1− c)

2 min(S,S ′)∑
l=1

a2S+2S ′+1−2l(3)

+ 1
2c

2S ′∑
l=1

[
a4S ′+1−2l(3− p0) + a4S ′+1−2l(3 + p0)

]
.

(17)

The density distribution functions for the rapidities,ρ2S(3) andρ2S ′(3), and their holes,
ρ2S,h(3) andρ2S ′,h(3), satisfy similar integral equations:

ρ2S,h(3) + ρ2S(3) +
∫
ε2S<0

d3′ K2S,2S(3−3′)ρ2S(3
′)

+
∫
ε2S′<0

d3′ K2S,2S ′(3−3′)ρ2S ′(3
′) = g2S(3)

ρ2S ′,h(3) + ρ2S ′(3) +
∫
ε2S<0

d3′ K2S ′,2S(3−3′)ρ2S(3
′)

+
∫
ε2S′<0

d3′ K2S ′,2S ′(3−3′)ρ2S ′(3
′) = g2S ′(3).

(18)

The energy and the magnetization are given by

E/N = −Jπ
∫
ε2S<0

d3 g2S(3)ρ2S(3)− Jπ
∫
ε2S′<0

d3 g2S ′(3)ρ2S ′(3)

Sz/N =
[
(1− c)S + cS ′

]− 2S
∫
ε2S<0

d3 ρ2S(3)− 2S ′
∫
ε2S′<0

d3 ρ2S ′(3).

(19)
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3. The isolated-impurity limit

In the limit c → 0 only then = 2S strings are present in the ground state. This means that
the system is driven only by the host and not by the impurities. Hence, the integral equations
(15) and (18) reduce to single integral equations of the Fredholm type. The properties of
isolated impurities forp0 = 0 have been obtained in reference [6]. Below we present the
results for an impurity withp0 6= 0, focusing on the low-T and small-field properties. Again,
three situations have to be distinguished: (i) ifS ′ = S the impurity is just one more link in
the chain; (ii) ifS ′ > S the impurity is undercompensated; and (iii) ifS ′ < S the impurity is
overcompensated.

In zero field the band of 2S-strings is completely filled and the hole density function
ρ2S,h is identically zero. For a small magnetic field the large3-tails of the distribution become
unpopulated and the Fredholm equations (15) and (18) can be reduced to a hierarchical sequence
of Wiener–Hopf integral equations, which can be solved by standard analytical methods. For
the small-field magnetization of the impurity, we obtain for the three cases

(i) S ′ = S Mimp = (SH/π2TK)[1 + S/|L| − S2(ln |L|)/(L)2 + · · ·]
(ii ) S ′ > S Mimp = (S ′ − S)[1 + S/|L| − S2(ln |L|)/(L)2 + · · ·]
(iii ) S ′ < S Mimp = A(H/TK)1/S

(20)

whereA is a constant that depends onS andS ′. HereTK = exp(−π |p0|) plays the role of
the Kondo temperature (we assumed here a largep0; otherwiseTK has a different functional
dependence) andL is shorthand notation for ln(H/TK). Hence, in case (i) the zero-field
susceptibility is finite with logarithmic corrections which are well known for Heisenberg
chains [3]. For case (ii) the impurity magnetization is finite, corresponding to an effective
spinS ′ −S, which is weakly coupled to the spin waves in the host (the logarithmic corrections
signal asymptotic freedom). Finally, for case (iii) the impurity spin is overcompensated,
giving rise to critical (non-Fermi-liquid) behaviour. The susceptibility diverges as a power
law determined by the host spin. ForS = 1 andS ′ = 1/2 the divergence is on a logarithmic
scale. The difference between the cases wherep0 = 0 andp0 6= 0 is the changed Kondo
temperature, i.e. the energy scale, and there is no change in the qualitative behaviour [6].

The properties of the three cases are also reflected in the zero-temperature entropy of the
impurity. In a finite field (independent of its magnitude) the entropy vanishes atT = 0 in all
three cases. This is, however, different for zero field where we have [6]

(i) S ′ = S Simp(T = H = 0) = 0

(ii ) S ′ > S Simp(T = H = 0) = ln[2(S ′ − S) + 1]

(iii ) S ′ < S Simp(T = H = 0) = ln{sin[π(2S ′ + 1)/(2S + 2)]/ sin[π/(2S + 2)]}.
(21)

Hence, in case (i) the ground state is a singlet (Luttinger liquid) and the entropy is a continuous
function ofH andT . If S ′ > S the zero-field entropy is that of the remaining free spin,S ′ −S,
which is consistent with the above results for the magnetization. A small magnetic field lifts
the degeneracy and the entropy vanishes. ForS ′ < S the zero-field entropy corresponds to a
fractional spin and the entropy has an essential singularity atT = H = 0 (the quantum critical
point). These results are identical to those for thep0 = 0 case [6].

From the Luttinger properties in case (i) it follows that the low-T specific heat is
proportional toT . For the undercompensated spinS ′ > S (case (ii)) the remaining effective
free spin,S ′ − S, gives rise to a Schottky anomaly atT ≈ H . In case (iii) the quantum critical
point of the overcompensated spin yields power-law dependences as a function ofT :

(iii ) S ′ < S Cimp ∝ (T /TK)4/(2S+2) T χimp ∝ (T /TK)4/(2S+2). (22)
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Again the critical exponents depend only on the spin of the host, since it is the host driving the
quantum critical point. ForS = 1 andS ′ = 1/2, instead of critical exponents a logarithmic
temperature dependence is obtained:

S ′ = 1/2 andS = 1 Cimp ∝ (T /TK) ln(TK/T ) TKχimp ∝ ln(TK/T ). (23)

Again, the only effect ofp0 is to introduce the Kondo energy scale.
The properties of the impurity in all three cases are closely related to the multi-channel

Kondo problem [9–14]. If on the other hand we considerc→ 1, only the band of 2S ′-strings is
occupied. The properties are then those of a Babujian–Takhtajan chain of spinsS ′with impurity
of spinS and rapidity−p0, i.e. the roles of the impurity and the host are interchanged.

4. Ground-state properties at finite concentration

The properties of the system change dramatically if the concentration of impurities is finite.
We consider first the zero-field case, which can be solved analytically, and then we present the
numerical results for the system in a finite magnetic field.

4.1. The zero-magnetic-field solution

In zero field the two populated rapidity bands, corresponding to strings of 2S- and 2S ′-spins,
are completely filled. This means that the two dressed energies are negative for all rapidity
values3. The integral equations (15) and (18) can then be solved by Fourier transformation:

ε2S(3) = − πJ (1− c)
2 cosh(π3)

ρ2S(3) = (1− c)
2 cosh(π3)

ε2S ′(3) = −πJc
2

{
1

2 cosh[π(3− p0)]
+

1

2 cosh[π(3 + p0)]

}
ρ2S ′(3) = c

2

{
1

2 cosh[π(3− p0)]
+

1

2 cosh[π(3 + p0)]

}
.

(24)

All densities for other string lengths are identically zero. Forc→ 0 the density of 2S ′-strings
tends to zero.

Inserting (24) into expression (19) we obtain the zero-field ground-state energyF0, given
by equation (14), and that the magnetization vanishes (the ground state is a singlet) for any
combination ofS andS ′. This contrasts with the results for isolated impurities discussed in
the previous section. We have to conclude that the limitc → 0 is singular [17]. Below, we
will mainly focus on the overcompensated case, i.e.S ′ < S, which for c → 0 shows non-
Fermi-liquid behaviour. We discuss this crossover from Fermi-liquid to non-Fermi-liquid in
more detail below.

4.2. Magnetic field dependence

The integral equations (15) and (18) for non-zero magnetic field have to be solved numerically.
A fieldH increases the dressed energiesε2S andε2S ′ , so the large|3|-tails are positive and hence
unoccupied. The points at which the dressed energies vanish form the ‘Fermi surface’ of the
model. In zero field the Fermi points lie at3 = ±∞. The dressed energies gradually increase
withH until the bands become unpopulated. For sufficiently smallc, first the impurity band is
depopulated at the critical fieldHc and then at the much larger fieldHs the band of 2S-strings
also becomes empty. For fields larger thanHs all spins are aligned and the magnetization is
saturated at the valueSz/N = (1− c)S + cS ′. Hs will be called the saturation field.
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As a concrete example we specialize our analysis toS = 1 andS ′ = 1/2, which for the
isolated impurity yields non-Fermi-liquid behaviour. However, for a finite concentration of
impurities the results are similar for other combinations ofS andS ′. For p0 = 0 the two
energy bands have their minima at3 = 0. For sufficiently largep0 the impurity band has
two minima located roughly at3 = ±p0. Increasingp0 decreases the Kondo temperature
and hence the coupling between the two bands. This is seen as follows: for a given fieldH

increasingp0 makes the impurity band off-resonance with the host rapidities, i.e. the bands
are not populated for the same intervals of3.

The numerical solution of the integral equations forc = 0.2 andp0 = 2 is shown in
figure 1 for five fields. Curves (a) correspond to the saturation fieldHs , for which both dressed
energies are positive for all3 andε2(0) = 0. The system has no spinons and the magnetization
is saturated. Curves (b) refer to a field intermediate betweenHc andHs . Hence, the impurity
band is still empty, but the host band,ε2, is partially filled. Curves (c) represent the dressed
energies at the critical field, for whichε1(±30) = 0 with 30 ≈ p0 being the point of the
minimum of theε1-band. Hence, the impurity band is still empty and the host band is partially
filled. For curves (d) both bands are partially occupied. Finally, curves (e) correspond to zero
field, where both bands are completely filled. Note that the field dependence of the impurity
band is much more pronounced than that of the host band. These results are similar to those
for impurity bands in strongly correlated electron systems [25,26].

Figure 1. Dressed energy potentials for (A) the impurity band (spinons) and (B) the host band
(two-strings of spinons) for a concentrationc = 0.2 of impurities of spinS ′ = 1/2 andp0 = 2 in
a host of spinS = 1 for several magnetic fields. The spinons have a three-peak structure arising
from the impurity rapidityp0 (the strength of the coupling of the impurities to the host) and the
host two-strings. The curves correspond to (a)Hs = 1.087, (b)H = 0.500, (c)Hc = 0.273,
(d)H = 0.150 and (e)H = 0.0.

The critical and saturation fields as functions ofc for three values ofp0 are shown in
figure 2(A). The saturation field decreases linearly with the concentration with a slope that
increases withp0. The critical fieldHc, on the other hand, increases withc. A largerp0

decreases the coupling of the impurities to the host (reduces the Kondo temperature), soHc
is reduced with growingp0. As c → 0 the dependence ofHc on c is non-analytic. This
non-analytic behaviour is a consequence of the overscreening of the impurities, and it is absent
for S ′ > S (undercompensated spins; see [17]) where the increase ofHc is linear inc.

For most casesHc corresponds to the depletion of the impurity band. In figure 2(A) for
p0 = 0 theHc- andHs-curves intersect at aboutc0 = 0.18. Forc < c0 the critical field refers
to the depletion of theε1-band, while forc > c0 first theε2-band is depopulated and then the
spinonε1-band atHs is depopulated.
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Figure 2. (A) The saturation fieldHs (dashed curves) and the critical fieldHc (solid curves) as
functions of the impurity concentration forS′ = 1/2 andS = 1 and three values ofp0. These are the
two fields at which the rapidity bands become empty.Hc depends non-analytically onc asc→ 0
as a consequence of the quantum critical point of the isolated-impurity limit. (B) Magnetization
as a function of field forS′ = 1/2, S = 1, c = 0.2 and for three values ofp0. The susceptibility
diverges as the field approachesHc orHs from below as a consequence of the one-dimensional van
Hove singularity of the empty bands. The magnetization is saturated for fields larger thanHs . For
p0 = 0 and as a function of field, first the host band is depleted, while for the other two cases first
the impurity band becomes unoccupied. (C) For very small fields the difference of the integration
limits B1 − B2 is independent of the field and depends logarithmically on the concentration.

The magnetization as a function of field is presented in figure 2(B) forc = 0.2 and
three values ofp0. The magnetization increases monotonically with increasing field and
vanishes linearly with the field (the susceptibility is finite for a singlet ground state) asH → 0.
The magnetization has cusps at the critical and saturation fields, which arise from the one-
dimensional van Hove singularities of the empty bands. The slope ofSz versusH diverges
when the critical fields are approached from below. For fields larger thenHs the magnetization
is saturated. The curve forp0 = 0 is somewhat different from the other two curves, because
in this case the host band is depleted before the impurity band. The low-T specific heat
is proportional to the temperature, except at the van Hove singularities, where the leading
contribution is∝T 1/2.
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4.3. The small-magnetic-field limit

For sufficiently small magnetic fields each of the dressed energies,ε2S andε2S ′ , has two zeros,
at3 = ±B2S and3 = ±B2S ′ , respectively. These are the integration limits for the integral
equations (15) and (18). The integration limits are, in principle, functions of the field, the
concentration and the impurity rapidity, and tend to infinity asH → 0. The coupled Fredholm
equations can be converted into a sequence of coupled Wiener–Hopf equations, from which it
is found that, asymptotically for large|3|, the two integral equations for the dressed energies
have driving terms that are proportional to each other. This can also be seen from equation (24),
where the large|3|-tails of the densities and dressed energies are all exponential and hence
proportional to each other. The consequence of this observation is that for small magnetic
fieldsB2S ′ −B2S is independent ofH and only a function ofc andp0. The field is proportional
to exp(−πB2S), soB2S parametrizes the field.

To obtainB2S ′ − B2S we numerically solve the integral equations (15). ForS ′ = 1/2
andS = 1 the result is displayed in figure 2(C) as a function of ln(c) for three values ofp0.
For sufficiently smallc the curves are straight lines all with the same slope. The three curves
can then be scaled onto each other if we plotB1 − B2 versus ln[c/c0(p0)], wherec0(p0) is a
scaling constant. We return to this point when we discuss the dressed generalized charges in
the context of finite-size corrections to the ground-state energy.

4.4. Crossover from Fermi-liquid to non-Fermi-liquid behaviour

We have learned that forS ′ < S, on the one hand, isolated impurities have a quantum critical
point with non-Fermi-liquid properties, while on the other hand, ifc 6= 0 the ground state is
a singlet. The difference between the two situations is the population of the 2S ′-string band,
which transforms a one-component Luttinger liquid into one with two components (two kinds
of strings). In this subsection we consider the gradual crossover between the two situations as
a function of a magnetic field.

Consider first equation (18) forH > Hc for sufficiently smallc. In this case the impurity
band is empty, so we have one integral equation of the Fredholm type. The driving term
can be divided into one for the host (proportional to(1 − c)) and one for the impurities
(proportional toc). Neglecting the(1 − c)-factor the host density is then identical to the
pure SU(2)-invariant Heisenberg host chain. The integral equation for the impurity part is
identical to the one considered in section 3, except for the constant factorc = Ni/N . Hence,
for Hc � H � TK the impurities have the same non-Fermi-liquid properties as isolated
impurities, i.e. a susceptibility that increases as the field is lowered.

At H = Hc the susceptibility is singular, because of the van Hove singularity of the empty
ε2S ′ -band. This band is partially filled forH < Hc and yields a two-component Luttinger
liquid. Hence, when the divergence of the susceptibility asHc is approached from below,χ
decreases with decreasing field and reaches a finite value asH → 0 (the singlet ground state).
In other words, as a function of field the system undergoes a crossover from non-Fermi-liquid
properties forH > Hc to Fermi-liquid-like behaviour forH < Hc.

5. The excitation spectrum

In this section we derive the spectrum of elementary excitations from the zero-field ground
state. For finitec andH = 0 both bands are completely filled without hole states. A hole
state is obtained by removing one rapidity. To remove the rapidity30, e.g. corresponding to a
2S-string of spin waves, requires the excitation energy1E2S(30) and a physical momentum
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p2S(30) given by

1E2S(30) = |ε2S(30)| p2S(30) = 2π
∫ 30

−∞
d3

[
ρ2S(3) + ρ2S,h(3)

]
(25)

and similarly for excitations within the 2S ′-band. The excitations are all of the hole type, since
the bands are filled.

Using the solutions for the dressed energies and densities derived in section 4.1, we obtain

1E2S(30) = πJ (1− c)
2 cosh(π30)

p2S(30) = 2(1− c) arctan
[
exp(π30)

]
1E2S ′(30) = πJc

4 cosh[π(30 − p0)]
+

πJc

4 cosh[π(30 + p0)]

p2S ′(30) = c arctan{exp[π(30 − p0)]} + c arctan{exp[π(30 + p0)]} .

(26)

The range for the physical momentum of the excitations is limited to the intervals 06 p2S 6
π(1− c) and 06 p2S ′ 6 πc, respectively. Note that in zero field the excitations from the host
band do not depend on the impurity rapidityp0.

The excitation spectrum is shown in figure 3 forc = 0.2, S ′ = 1/2, S = 1 and several
values ofp0. While the excitations from the host band are identical to those of the Babujian–
Takhtajan Heisenberg chain rescaled by the factor 1− c, the excitations from the impurity
band strongly depend onc (<0.5) and the coupling between the host and the impurities, i.e. on
p0. For p0 = 0 the hole excitations from the impurity band again scale with those of the
Heisenberg chain if the energy and momentum are multiplied byc. For the Heisenberg chain
without impurities the momentum range in zero field isπ . This is still the case for the chain
with impurities if the ranges of the two excitations are added together. With increasingp0 the
excitations from the impurity band gradually acquire a two-peak structure, which for largep0

(whenTK is small and the two bands are off-resonance) reduces to a halving of the period.

Figure 3. The energy dispersion for the hole excitations from (A) the host band of 2S-strings and
(B) the impurity band of 2S′-strings forS′ = 1/2, S = 1, c = 0.2 and various values ofp0.
Note that the excitations of the host depend neither onp0 nor onS. The two bands decouple with
increasingp0 and for sufficiently largep0 the period of the impurity band is halved.

Since the spectrum of elementary excitations of the Babujian–Takhtajan Heisenberg chain
does not depend on the spin, the excitations shown in figure 3 are independent ofS andS ′.
For small momentum transfer the excitation energy is proportional to the momentum, the
proportionality constant being the spin-wave velocityv. The spin-wave velocity in zero field
is independent of the spin, sov = πJ/2 for both bands.
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6. Finite-size corrections and correlation functions

In this section we first derive the finite-size corrections to the ground-state energy and then we
use the low-energy excitation spectrum to study the asymptotics of the spin–spin correlation
functions.

6.1. Finite-size effects

The finite size of a ring manifests itself in several ways:

(i) Impurities are important in mesoscopic systems, since their contribution to extensive
quantities can become large and observable, and may even change the properties.

(ii) The finite length of a ring yields persistent currents with oscillation periods given by
interference patterns of the Aharonov–Casher type.

(iii) Finite-size corrections to the energy determine the critical exponents of the asymptotic
dependence at long times and large distances of correlation functions via conformal field
theory [27–30].

To calculate the finite-size corrections to the ground-state energy, i.e. the change of the
energy due to the finite length of the ring, we follow the procedure developed in references [27]
and [31]. We confine ourselves to considering the situation without an applied magnetic field.
The ground-state energy including mesoscopic terms is given by

E = Nε∞ +
∑
l

2πv(l)

N

[
1

2

∑
q

(ẑ−1)lq 1M
(q)

]2

+
∑
l

2πv(l)

N


[∑

q

zlq
(
D(q) + ϑ(q)

)]2

− 1

12
+ n(l)+ + n(l)−

 (27)

whereε∞ is the ground-state energy density in the thermodynamic limit,l andq label the two
bands and can take the values 2S ′ and 2S, and thev(l) denote the spin-wave velocities for the
two bands (in zero field they are both equal toπJ/2). The quantitiesϑ(q) are phase shifts of
the Aharonov–Casher type, which could be induced by a radial electric field flux. These phase
shifts are not relevant in the present context (for a discussion see reference [18]) and will be
neglected.

The mesoscopic energy depends on several quantum numbers.1M(q) is the departure of
the number of strings in the bandq from the equilibrium value.D(q) is the backward scattering
quantum number, i.e. 2D(q) represents the difference of forward- and backward-moving strings
from the equilibrium value. These quantities are sensitive to the parity in each set of rapidities.
Finally, then(q)± define the low-lying excitations about each of the Fermi points. Here1M(q),
n(q)± and 2D(q) always take integer values; henceD(q) can be either an integer or a half-integer
depending on the initial conditions.

The quantitieszlq in equation (27) are the dressed generalized charges of the excitations
at the Fermi points,zlq = ξl,q(Bq). The dressed charges are determined by the following set
of integral equations:

ξl,q(3) = δl,q −
∫ B2S

−B2S

d3′ Kq,2S(3−3′) ξl,2S(3′)−
∫ B2S′

−B2S′
d3′ Kq,2S ′(3−3′) ξl,2S ′(3′)

(28)

where theBq are the Fermi points determined by the zeros ofε2S andε2S ′ in the limitH → 0 (see
subsection 4.3). In equation (27),ẑ−1 denotes the inverse of the matrix of dressed generalized



4630 P Schlottmann

charges. The dressed charges describe the interplay of the different Fermi points when rapidities
are added or removed.

The driving terms of equation (28) do not depend onc andp0. Hence, the only dependence
on the physical parameters of the model enters throughB2S ′ −B2S , which is field independent
but a function ofc andp0. B2S parametrizes the magnetic field and tends to infinity asH → 0.
Hence, we may use a plot like figure 2(C) to obtainB2S ′ −B2S for a givenc andp0. The scaling
of the curves for differentp0-values in the limitH → 0 indicates that the dressed charges as
functions ofc are all similar for the differentp0-parameters.

We solved equation (28) numerically forS ′ = 1/2 andS = 1 as a function ofB1−B2 in the
limit of largeB2, since here we only consider the zero-field case. The four dressed generalized
charges are shown in figure 4(A). From the form of the integral equations it is clear thatz11

andz22 are always positive, whilez12 andz21 are negative. AsB1 − B2 → −∞ the spectral
weight of the impurity band tends to zero; in this limitz11→ 1, z12→ 0, z21→ −0.5 and
z22 → 0.5. ForB1 − B2 → +∞, on the other hand, the spectral weight of the host band
tends to zero, and in this limitz11 = −z12 = 1/

√
2, z21 → 0 andz22 → 0.722. All of the

limiting values except the latter can be obtained analytically.z22 for B1 − B2 → +∞ has to
be determined numerically since the two integral equations do not decouple in that limit.

Figure 4. (A) Dressed generalized charges and (B) critical exponents of the spin–spin correlation
functions forS′ = 1/2 andS = 1 as functions ofB1 − B2.

In terms of the quantum numbers defined above, the momentum of the system is given by

P = 2π

N

∑
l=1,2

[
M(l)

(
D(l) + ϑ(l)

)
+ n(l)+ − n(l)−] . (29)

Equations (27) and (29) define the mesoscopic corrections to the ground-state energy and
momentum of a two-component Luttinger liquid.

6.2. Correlation functions

We now obtain the long-time large-distance asymptotics for the longitudinal and transverse
spin–spin correlation functions for both the impurity and host bands. As usual for gapless
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one-dimensional systems (Luttinger liquids), the correlations fall off as power laws in time
and distance. The critical exponents follow from conformal field theory in combination with
the finite-size excitation spectrum. In terms of the conformal dimensions of a primary field
ϕ(Q), the excitation energy and momentum are given by

Eexc(Q)− E0 = 2πv(2S
′)

N
(1+

2S ′ +1
−
2S ′) +

2πv(2S)

N
(1+

2S +1−2S)

Pexc(Q)− P0 = 2π

N
(1+

2S ′ −1−2S ′ +1+
2S −1−2S).

(30)

Comparing these expressions with equations (27) and (29), we have that

21±2S ′ =
{

1

2 det

[
z2S,2S1M

(2S ′) − z2S,2S ′1M
(2S)
]

±
[
z2S ′,2SD

(2S) + z2S ′,2S ′D
(2S ′)

] }2

+ 2n(2S
′)±

21±2S =
{

1

2 det

[
z2S ′,2S ′1M

(2S) − z2S ′,2S1M
(2S ′)

]
±
[
z2S,2SD

(2S) + z2S,2S ′D
(2S ′)

] }2

+ 2n(2S)±

(31)

where ‘det’ is the determinant of the matrixẑ. From an inspection of the discrete Bethe-
ansatzequations it follows that 2D(2S ′) = 1M(2S ′) (mod 1) and 2D(2S) = 1M(2S) (mod 1), in
complete analogy to the case of the usual Heisenberg chain.

The asymptotic form of the correlation function for the operatorϕ(x, t) is [28–30]

〈ϕ(x, t)ϕ(0, 0)〉 =
∑
Q

B(Q) exp
[−2ix

(
p2S ′D

(2S ′) + p2SD
(2S)
)]

× (x − iv(2S
′)t)−21+

2S′ (x + iv(2S
′)t)−21−

2S′ (x − iv(2S)t)−21+
2S (x + iv(2S)t)−21−2S

(32)

where the indexQ refers to the conformal fields contained in the operatorϕ, andp2S ′ and
p2S are the Fermi momenta of the two bands. In zero field the two group velocities are
equal, so the fourx- andt-dependent factors can be combined into two, and 2p2S ′ = πc and
2p2S = π(1− c).

Consider first the longitudinal spin–spin correlation functions. Since the operatorsS ′z and
Sz do not flip spins,1M(2S ′) = 1M(2S) = 0 andD(2S ′) andD(2S) are integers. The leading
term corresponds toD(2S ′) = D(2S) = 0 and one of the four quantum numbersn(2S

′)± and
n(2S)± being equal to one. The next-to-leading terms involve eitherD(2S ′) orD(2S) being equal
to one and all other quantum numbers equal to zero. The third-order terms either double the
period of oscillation or produce an interference between the Fermi surfaces of the two bands.
Period doubling involves eitherD(2S ′) or D(2S) being equal to two and all other quantum
numbers equal to zero. Interference terms arise fromD(2S ′) = D(2S) = 1 (the sum of periods)
orD(2S ′) = −D(2S) = 1 (the difference of periods) and all other quantum numbers equal to
zero. The leading-order, next-to-leading-order and third-order terms yield for the operatorSz

〈Sz(x, t)Sz(0, 0)〉 = AS x2 − v2t2

(x2 + v2t2)2
+BS

cos[π(1− c)x]

(x2 + v2t2)θS
+BS ′

cos(πcx)

(x2 + v2t2)θS′

+ CS
cos[2π(1− c)x]

(x2 + v2t2)4θS
+CS ′

cos(2πcx)

(x2 + v2t2)4θS′

+ C+
cos(πx)

(x2 + v2t2)θ+
+C−

cos[π(1− 2c)x]

(x2 + v2t2)θ−
. (33)
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The exponentsθS andθS ′ are given by

θS = z2
2S,2S + z2

2S ′,2S θ2S ′ = z2
2S,2S ′ + z

2
2S ′,2S ′ (34)

and are displayed in figure 4(B) forS ′ = 1/2 andS = 1 as functions ofB1−B2. The exponents
of the interference terms are

θ± = (z2S,2S ± z2S,2S ′)
2 + (z2S ′,2S ± z2S ′,2S ′)

2. (35)

An expression analogous to equation (33) holds for the operatorS ′z. The terms included in
equation (33) are allowed by symmetry, but their coefficients could be zero. For instance, it
is not meaningful to have non-zeroAS ′ , BS ′ andCS ′ in theSz-correlation function. Similarly,
AS , BS andCS should be zero for theS ′z-correlation function.

We consider now the transverse correlation functions. The operatorSx changes the number
of rapidities in the host band by one unit, i.e.1M(2S) = ±1 andD(2S) = ±1/2, while all other
quantum numbers are zero for the leading term of the correlation function:

〈Sx(x, t)Sx(0, 0)〉 = A 2x cos[π(1− c)x/2]

(x2 + v2t2)θ+1/2
. (36)

Similarly,S ′x changes the number of rapidities in the impurity band by one unit, i.e.1M(2S ′) =
±1 andD(2S ′) = ±1/2, while all other quantum numbers are zero for the leading term:

〈S ′x(x, t)S ′x(0, 0)〉 = A
2x cos[πcx/2]

(x2 + v2t2)θ+1/2
. (37)

The transverse correlation functions of the two bands only differ by the periodicity of their
Fermi surface. Hereθ is given by

θ = 1

4 det2
θS ′ +

1

4
θS (38)

and is shown in figure 4(B) forS ′ = 1/2 andS = 1 as a function ofB1− B2.

7. Concluding remarks

We considered the SU(2)-invariant generalization of the Heisenberg chain of spinsS (the
Babujian–Takhtajan model) with a finite concentrationc of impurities of spinS ′. The model
is integrable by construction as a function of four parameters, namelyS, S ′, c and the impurity
rapidityp0, which determines the coupling of the impurities to the lattice. We stated the Bethe-
ansatzequations diagonalizing the model and derived the thermodynamic and ground-state
integral equations.

In the isolated-impurity limit we have to distinguish three different situations:

(i) If S ′ = S the impurity adds just another link to the chain and its low-T properties are those
of a Luttinger liquid, i.e. the susceptibility is finite and the specific heat is proportional
to T .

(ii) If S ′ > S the impurity is undercompensated by the lattice spins, leaving a remnant spin
of S ′ − S.

(iii) For S ′ < S the impurity spin is overcompensated giving rise to a quantum critical point
and power-law dependences as functions of field and temperature in the susceptibility and
the specific heat.

The coupling parameterp0 introduces an energy scale analogous to the Kondo temperature.
The three cases discussed above are in complete analogy with the multi-channel Kondo
problem. It has been argued [16] that the this integrable isolated-impurity model corresponds
to a non-generic multi-critical fixed point.
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A finite concentration of impurities dramatically changes the physical low-T properties
of the model forS ′ 6= S. The ground state is a singlet in all cases and the low-T fixed point
is given by a two-component Luttinger liquid. As a function of the magnetic field, the two
rapidity bands are gradually depleted. For smallc first the impurity band is emptied at a critical
fieldHc and then the host rapidity band is emptied at the saturation fieldHs . ForH > Hs all
of the spins are aligned and the ground state is ferromagnetic.

For S ′ 6= S andHc < H < TK , i.e. for small impurity concentrations, only the host
rapidity band is populated (strings of length 2S) and the properties of the impurities are the
same as those of isolated impurities multiplied by the concentration. IfS ′ < S the system
then approaches the quantum critical point as the field is reduced (power-law behaviour, unless
S ′ = 1/2 andS = 1, where the dependence is logarithmic) untilHc is reached. In this regime
the impurities are exclusively driven by the host band. AtHc the impurity band becomes
partially occupied and this drastically changes the properties. The system is now a two-
component Luttinger liquid. AtHc the one-dimensional van Hove singularity of the impurity
band gives rise to a square-root divergence in the susceptibility asHc is approached from
below. As the field is lowered further the susceptibility approaches a constant. Hence, as the
field is reduced throughHc the system undergoes a crossover from non-Fermi behaviour to
Fermi-liquid-like behaviour.

We studied the zero-field spectrum of elementary excitations for the two-band system.
Each of the excitations is of the hole type and corresponds to removing one rapidity from one
of the bands. The energy and momentum of the excitations of the host band are independent
of p0 and are just those of the standard Heisenberg chain multiplied by 1− c. The spectrum of
the impurity band strongly depends on the coupling parameterp0. For smallp0 it scales (the
scaling factor is the concentration) with the excitations of the ordinary Heisenberg chain. For
largep0, on the other hand, the period of the spectrum is halved. In zero field the two bands
have the same group velocity for the spin waves. This changes if the field is non-zero.

The finite-size corrections to the ground-state energy were obtained in section 6. In
zero field they correspond to a two-component Luttinger liquid with the Fermi points at
|3| → ∞. The low-energy excitations are described in terms of quantum numbers representing
the changes in the populations of the bands, the backward-scattering quantum numbers and
excitations about the four Fermi points. These excitations and the expression for the momentum
in terms of the quantum numbers yield the conformal dimensions of the primary fields and
hence the critical exponents for the asymptotics of the correlation functions. We studied
the longitudinal and transverse spin–spin correlation functions for each band. The critical
exponents depend onc andp0 through the difference of the integration limitsB2S ′ − B2S .
Terms oscillating as a function of the distance are obtained. The periodicities depend on the
Fermi momenta of the two bands, i.e. on the impurity concentration. Third-order terms in the
longitudinal correlation function give rise to period doubling and interference of the two Fermi
surfaces.

In summary, we studied this interesting model in detail, since it is exactly soluble and it
shows explicitly the crossover from non-Fermi-liquid to Fermi-liquid behaviour as a function
of c andp0, which are two model parameters that can be varied continuously. In section 2
we mentioned that the model is integrable for an arbitrary distribution of impurity rapidities.
A distribution ofp0 induces a distribution of Kondo temperatures, which may also give rise
to non-Fermi-liquid behaviour [32]. Distributions of Kondo temperatures in the context of
integrable systems have been discussed in references [25, 33]. For the present model non-
Fermi-liquid behaviour can be obtained even in the two-component Luttinger-liquid regime if
the distribution ofp0 has a tail tending to infinity. Large values ofp0 yield small values ofTK ,
i.e. small Fermi energies, and hence eventually a quantum critical point atT = H = 0.
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Appendix. The impurity Hamiltonian

The lattice Hamiltonian can be obtained as the logarithmic derivative of the transfer matrix
(5); see equation (6). For the single-impurity model the transfer matrix consists ofN − 1
host scattering matrices and one scattering matrix for the host spins and the impurity. The
former gives rise to the Hamiltonian of the Babujian–Takhtajan Heisenberg chain [3], where
we denote asHi,i+1 the interaction for the link between the sitesi andi + 1:

H =
N−1∑
i=1

Hi,i+1.

We now assume that the impurity is at the siteN . By construction, the impurity then interacts
with the neighbouring sitesi = 1 andi = N − 1. The general structure of the impurity
Hamiltonian is now of the following form:

Himp = f1(S
′, p0)

(
H
(S ′)
N−1,N +H(S ′)

N,1 + {H(S ′)
N−1,N ,H

(S ′)
N,1}

)
+ f2(S

′, p0)HN−1,1 + if3(S
′, p0)

[
(H

(S ′)
N−1,N +H(S ′)

N,1),HN−1,1

]
(A.1)

wheref1(S
′, p0) andf2(S

′, p0) are even functions ofp0, whilef3(S
′, p0) is an odd function of

p0. Here the square (curly) brackets denote a commutator (anticommutator). The Hamiltonian
H
(S ′)
N,1 (and similarlyH(S ′)

N−1,N ) is a polynomial of order min(2S, 2S ′) of (S′N · S1); e.g. for
S ′ = 1/2 (parametrized by Pauli matrices) we have

H
(S ′=1/2)
N,1 = a(p0) + b(p0)(σN · S1). (A.2)

The interaction Hamiltonian (A.1) involves the spins of the three sites involved. Due to the
impurity rapidityp0 being non-zero, the impurity Hamiltonian breaks the time-reversal(T )

and parity(P ) symmetries separately, but their productT P is conserved. This manifests
itself in a non-zero total quasi-momentum of the system. Note that, by construction, from
the integrability condition the impurity involves only forward scattering (unitary transmission)
and that the reflected wave has zero amplitude. This makes the model non-generic. It is well
known that non-Fermi-liquid properties can only arise in special non-generic situations, while
normally a one-dimensional system is a Luttinger liquid.
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