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Abstract. We consider an integrable SU(2)-invariant model consisting of a Heisenberg chain
of spinsS (the Takhtajan—Babujian model) interacting with a finite concentratiohimpurity
spinsS’. The thermodynamic Beth@asatzequations are stated for this model. The ground-state
equations are analysed as a functiom,dhe magnetic field and the coupling parameter (impurity
rapidity po) of the impurities to the lattice. In zero field the ground state is a singlet for finite
¢, but becomes non-Fermi-liquid-like as— 0 for ' < S. Two rapidity bands play a role at

T = 0 corresponding to strings of lengtty 2nd 25’, respectively. The van Hove singularities

of the empty bands define two critical field3;(c, po) and H; (c, po), at which the susceptibility
diverges. H, tends to zero as — 0 giving rise to a crossover from non-Fermi-liquid behaviour
for H > H, to Fermi-liquid-like behaviour fod < H.. The spectrum of elementary excitations
and the finite-size corrections to the ground-state energy are calculated, and used to discuss the
asymptotic behaviour of spin—spin correlation functions for long times and large distances.

1. Introduction

There has recently been interest in integrable spin chains containing impurity spins. For the
host we consider the Takhtajan—Babujian model [1-3] which is the integrable SU(2)-invariant
generalization of the standard Heisenberg chain of spins 1/2 to higher$pihke model
consists of an interaction between spins on nearest-neighbour sites, which has the form of a
polynomial in(S; - S;+1) of order 25. An isolated impurity of spirs’ can either be located on
themth link of the Heisenberg chain [4—6] coupled to both neighbouring sites or at the end of
an open chain [7] coupled only to the first or last site of the chain. The interaction between the
impurity and the chain is of a special type, constructed such that the model remains integrable
(and SU(2) invariant) [4—6].

The model and its solution are constructed from the scattering matrices via the quantum
inverse scattering method. The diagonalization of the transfer matrices then yields the Bethe-
ansatzequations for the spin chain with impurity. For the embedded impurity the condition of
integrability leads to a phase shift for forward scattering, but no reflection scattering amplitude.
In the case of an impurity in an open-ended chain, on the other hand, the boundary acts as a
perfect backscatterer with vanishing transmission. In this case the effects of the boundary and
the impurity have to be separated. The magnetic properties of the impurity for small fields do
not depend on the location (on a link or at the open end) of the impurity and for large fields the
asymptotically free spin is recovered for both cases with the same ‘universal’ corrections [7].

Three situations have to be distinguished for the integrable spin chain with impurity [6,8,9]:
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() If $" = S the impurity is just one more site in the chain. The= 0 entropy vanishes for
all fields, giving rise to Fermi-liquid-like behaviour; i.e., the susceptibility is finite and the
specific heat is proportional tB.

(i) If S” > S the impurity spin is only partially compensatedZat= 0, leaving an effective
spin of §' — S that is weakly coupled to the chain. The entropy is singular, i.e.,
S(T =0,H =0) =1In[2(S — §)+1],andS(T = 0, H # 0) = 0. As a function
of T the remaining spin degeneracy gives rise to a Schottky anomaly atAbeut and
the zero-field susceptibility diverges following a Curie law.

(iii) If §” < S the entropy has an essential singularityfa= H = 0, giving rise to critical
behaviour, i.e. power laws df andT, asH andT both tend to zero.

These properties are in close analogy with (i) the completely compensated, (ii) the under-
compensated and (iii) the overcompensated impurity spin situations in the multi-channel Kondo
problem [9-14].

This singular behaviour appears to be inconsistent with renormalization group studies [15],
which conclude that the only stable critical points correspond to an unperturbed (periodic) chain
and a chain with a break at the impurity site (the open-ended chain). Only the latter fixed point
may have a remnant impurity spin. A more detailed study of the system around the integrable
pointin parameter space leads to the conclusion that the integrable impurity model corresponds
to a non-generic multi-critical point [16].

The situation of an embedded impurity has been extended to a finite concentrafion
impurities (a Heisenberg chain of spins 1/2 with impurities of sgn[17]. This adds one
more variable to the parameter space without destroying the integrability of the model. As
a function ofc it is found that the behaviour for finiteis different from that of the isolated
impurity; that is, the system is a two-component Luttinger liquid and the ground state is a
singlet. This result is consistent with the conclusion reached from the renormalization group
flow diagram [16] that the isolated-impurity model corresponds to a multi-critical fixed point.
The mesoscopic corrections to the ground-state energy for the two-component Luttinger liquid
and the quantum interference pattern in persistent spin currents as a function of the electric field
flux (the Aharonov—Casher effect) have been discussed in reference [18]. This model is also
closely related to the chain of alternating spins proposed by de Vega and Woynarovich [19].

In this paper we extend the above results in several ways:

(&) An impurity rapidity pg is introduced in analogy to Kondo impurities embedded into
Luttinger liquids. The parametgxp allows one to continuously vary the coupling strength
of the impurities to the host [7,20-22].

(b) While inreference [17] we considered undercompensated impusitiesl(/2, S’ > 1/2),
here we focus on overcompensated impuriti8s< $’). This allows us to study the
crossover from Fermi-liquid to non-Fermi-liquid behaviour as a functiot) pf and the
magnetic fieldH.

(c) We discuss the spectrum of elementary excitations for the two-component Luttinger liquid
(finite ¢) and the gradual depopulation of the spinon bands as a functiéh afid the
coupling parametep.

(d) We calculate the mesoscopic corrections to the ground-state energy and use them to
study the asymptotic behaviour of spin—spin correlation functions for long times and
large distances.

The rest of the paper is organized as follows. In section 2 we state the discrete Bethe-
ansatzequations diagonalizing the model, classify the states and obtain the integral equations
determining the thermodynamics and the ground state. The Hamiltonian for an isolated
impurity is discussed in the appendix. In section 3 we summarize the results for an isolated
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impurity (the generalization of reference [6]pg #~ 0). The ground-state properties fog 0

are presented in section 4. The evolution of the dressed energy bands for the spinon strings is
discussed as a function &f, and the magnetization and the critical fields (corresponding to
one-dimensional van Hove singularities) are obtained as a functioarafp,. The conditions

for a crossover from Fermi-liquid to non-Fermi-liquid behaviour are analysed. In section 5
we address the spectrum of elementary excitations. The finite-size corrections to the ground-
state energy are calculated in section 6 and then used to obtain the critical exponents of the
asymptotics of the spin—spin correlation functions. Conclusions follow in section 7.

2. Betheansatzequations

2.1. Vertex weights and the transfer matrix

As in references [1-6], the model is defined by the transfer matrix in terms of the vertex
weights. The vertex weight operat&(1) acting on the space of the tensor product of two
spinsS is defined by

25 j
ssRP0) ==Y ﬁ Ly (1)
j=0 k=1 Atk

where P/ is a projector that selects the states with total spirHence, if|l) is a state with
total spin/, thenP/|l) = §;,|I) and

28

Pl =[] =X @

1=0 X — Xj
I#j

with x; = %l(l +1) — S(S+1) andx = Sy - S». Hence,P/(x) is a polynomial of order £in
x. The vertex weights satisfy the triangular Yang—Baxter relation, so the model is integrable.
These vertex weights define the Babujian—Takhtajan model ofSspitthout impurities.

The weight of the vertex between the impurity of sgihand the host spits can be
constructed by a similar procedure. The resultfoe= 1 and arbitrary spii can be found in
reference [5]. We limit ourselves to presenting the vertex weigh§ fes % and arbitrary spin
S [1-6]:

soRZ0) =3(1-20)h® L+S1®0; ©)

where!l denotes the identity and the vector Pauli matrices represent th&’spiinis vertex
weight satisfies the triangular relation with equation (1), which is sufficient for the integrability
of the model.

We now introduce a standard monodromy mafr'(M:

J(A) = 505 RO Q) 555, R2(0) - - - 505, ROV (1) 4

where the matrix product is carried out in tf#S + 1)-dimensional auxiliary space denoted
by So. (Note that since we construct an SU(2)-invariant model, the dimension of the auxiliary
space is irrelevant. Any value of the spig yields the same result.) Associated with each
vertex weight is a spin, e.; at the sitg, which is either a spi§ or an impurity spins’. There

are N, spinsS andN; spinsS’, with N = N, + N; being the total length of the chain. For an
impurity vertex weight we shift the argumentby the quantitypo, the impurity rapidity. In
principle we may apply a different argument shift to each impurity. We will briefly address
the consequences of a distribution of impurity rapidities in section 7.
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The trace over the ingoing and outgoifigtlines yields the transfer matrik (1.):
T() = Tro(J (W)). ()

The transfer matrices for different values of the spectral paramet&mmute, i.e., there
is a basis of states that diagonaliZég.) for all » simultaneously. This also holds for any
distribution of impurity rapiditiespg. The Hamiltonian, i.e. the energy associated with the
transfer matrix, is then constructed according to

d

H= o InT(x) L (6)
This procedure leads to the Babujian—Takhtajan Heisenberg chain [1-3] ofsjoing; = 0
(the absence of impurities) and of sgihfor N, = 0 (no host spins). The interaction Hamil-
tonian for an isolated impurity of arbitrary spf with po = 0 andS = 1/2 was derived in
reference [4], forS = 1 andpg = 0 in reference [5] and for the general cagg & 0) it is
discussed in reference [6]. The construction of the Hamiltoniapgog 0 is more involved
and has been carried out for related models in references [7,18,20-22]. A brief discussion is
given in the appendix.

The many-impurity Hamiltonian depends on the relative space distribution of the impurity
spins and has to be constructed for each particular configuration. For instance, if all impurities
are separated from each other by a distance of atleast three lattice spaces, the Hamiltonianis just
the sum of those of the isolated impurities. In general there are a large number of Hamiltonians
(with different space distributions of impurities) corresponding to the same energy eigenvalue.
In this integrable model the energy eigenvalues do not depend on the relative positions of the
impurities. This peculiar property is the consequence of the integrability or equivalently of
the structure of the transfer matrix. Despite this ‘locality’ structure (lack of dependence on
distances and large degeneracy of space configurations), the many-impurity Hamiltonian leads
to a singlet ground state, in contrast to the single-impurity Hamiltonian for which the ground
state is degenerate. This model is related to the translationally invariant lattice of alternating
spins 1/2 andS (¢ = 1/2) with second-next-nearest neighbour interactions considered by
de Vega and Woynarovich [19].

2.2. Bethe-ansatz equations

The simultaneous diagonalization of the transfer matrices leads to the &sthezquations.
Following the standard procedure outlined elsewhere [1-6] we obtain

Aj+iSNY A —po+is \M A — A @)
A]—|S Aj—po—iS/ B =1 A‘]‘—Al—i
wherej = 1,..., M. TheA, are the spin rapidities which are related to the wavenumbers of
the magnons. The energy and the magnetization are given by
Ny &L s N & s
E= Y s N D e
N & A2+S82 " N o (A — po)? + 572 (8)

S. = (NxS+N;S')— M.

The concentration of impurities is defined@as= N;/N andN,/N = 1 — ¢, whereN is

the total number of sites. Fer= 0 orc = 1 we recover the Bethansatzequations for the
Babujian—Takhtajan Heisenberg chains of sirend S’, respectively. Note that the Bethe-
ansatzequations, the energy and the magnetization are all symmetric under the exchange
of (N;, S, po) and(Ny, S, 0), i.e. the interchange of the host and impurities. The energy has
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N, +N; terms that arise from th¥ factors of the transfer matrix of whidk, are host scattering
matrices andv; are impurity scattering matrices. This result is independent of the choice of
the dimension of the auxiliary spin spa&g Below we consider the symmetrized version of
the above equations, i.e. the case wheg&impurities have a forward rapidifyp andc/2 have

a backward rapidity- po. This does not require any further consideration, since the model is
integrable for any distribution of impurity rapidities.

2.3. Thermodynamics

In the thermodynamic limit the solutions of equation (7) lie in the complex plane and form
strings of length(n — 1) [3-6, 23]:

AT = A +i(n+1—20)/2 a=1...,n 9

whereA’; is a real parameter representing the motion of the centre of mass of the string. The
length of the string is in principle arbitrary, = 1, 2, .... If &, is the number of strings of
lengthn, then we must satisfy

M = Znén. (10)

n=1

In general, a string excitation of orderrepresents a bound-magnon statexahagnons,
although exceptions have been found [24] in which string states do not correspond to bound
magnons.

The rapidities satisfy Fermi statistics and their occupation is most conveniently described
in terms of dressed energieg(A), which enter the Fermi distribution function. In thermal
equilibrium they satisfy the following integral equations [3—6, 23]:

en(A) =T / dA’ Go(A — A In{[1 + exple,n—1(A)/T)][1 + expen+a(A))/T)]}

— I (1= 0)Go(A)8n.25 — Jmcg [Go(A — po) + Go(A + po)l 8mas  (11)

whereGo(A) = [2coshir A)]~L. Equations (11) are the thermodynamic Be#imsatzequ-
ations, which are only complete with the asymptotic field boundary condition

lim & — H. (12)

m—o0o m

The free energy of the system is given by
F(H T)=Fy—NT(1—-o¢) f dA Go(A) In[1 +expezs(A)/T)]

— NTc / dA 3 [Go(A — po) + Go(A + po)] In[1 +explezs (A)/T)]  (13)
whereFy is the ground-state energy in zero magnetic field:
Fo=3INA-0?[¥v (D) —v(3+9)]
+JINc(L—c)Re[y(3+|S = S| +izpo) —Y(5+S+S +izpo)]
+2INCRe[Y($) + ¥ (3 +ipo) —¥(3+8) — ¥ (G +5 +ipo)]. (14)

Y is the digamma function and Re denotes the real part.
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2.4. Ground-state equations

The ground-state integral equations are obtained in the #imit- 0. From equations (11)

we have that ag§ — 0 only €55 ande,g can become negative. Only states with negative
dressed energy are populated. After some algebra we arrive at the following coupled integral
equations:

€25(A) +/ dA’ Kas.25(A — A') e25(A)
625<0

+ dA" Kas,05 (A — Aeéag (A) = 2SH — mJgo5(A)
€5/ <0 (15)
€25/ (A) +/ dA’ Koy 25(A — A)eas(A)
€25<0
+ dA’ Koy 25 (A — Aeag (A) = 28'H — 1 J gag (A)
€5 <0

where the integration kernels are given by

Pn,n’

Kn.n’(A) = an+n’(A) + 22 Apt+n' =21 (A) + alnfn’\(A) (16)
=1

with a,(A) = n/(2r)/[A? + (n/2)?], ap = 0 andp, ,, = min(n, n’) — 1. The driving terms
are

25
g2s(A) = (L—¢) ) assss-a(A)
=1

2min(S,S")

+ 3¢ Z [azs+25+1-21(A — po) + azsas+1-2(A + po)]
=1
2min(S,S") (17)
gas(A)=(1—c) Y azseass1a(A)

=1

25’
+1c Z [ass+1-2(A — po) + asg+1-2(A + po)].

=1

The density distribution functions for the rapiditigss (A) andp,s (A), and their holes,
p2s.n(A) andpags ,(A), satisfy similar integral equations:

P25, (A) + p2s(A) +/ dA’ Kos25(A — A pas(A')

625<0
+ dA" K525 (A — A pag (A") = gos(A)
€50 <0 (18)
25,1 (A) + p2s (A) + dA’" Kag 25(A — A pas(A)
€25<0
+ dA" Kag 25 (A — A')pas'(A) = gas (A).
€25/ <0

The energy and the magnetization are given by

E/N = —Jn/

€25<0

dA g25(A)pas(A) — Jr / dA g2 (A)p2s (A)
€5/ <0 (19)
dA pas(A) — 28’ / dA pas (A).

€50 <0

S/N =[1-c)S+cS'] - 25/

€25<0
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3. The isolated-impurity limit

In the limitc — 0 only then = 2§ strings are present in the ground state. This means that
the system is driven only by the host and not by the impurities. Hence, the integral equations
(15) and (18) reduce to single integral equations of the Fredholm type. The properties of
isolated impurities forpg = 0 have been obtained in reference [6]. Below we present the
results for an impurity wittpg # 0, focusing on the lowr and small-field properties. Again,
three situations have to be distinguished: (i§if= S the impurity is just one more link in

the chain; (ii) if S’ > S the impurity is undercompensated; and (iii)Sif < S the impurity is
overcompensated.

In zero field the band of £-strings is completely filled and the hole density function
pa2s.n is identically zero. For a small magnetic field the largeails of the distribution become
unpopulated and the Fredholm equations (15) and (18) can be reduced to a hierarchical sequence
of Wiener—Hopf integral equations, which can be solved by standard analytical methods. For
the small-field magnetization of the impurity, we obtain for the three cases

s =s Miwp = (SH/T?Ti)[1 + S/1L] — S2An L) /(L)% + - -]
(i) s > S Miwp = (S = [L+S/IL] = S*An L)) /(L)* +- -] (20)
(i) S < S M, = A(H/T)"$

whereA is a constant that depends Srand S’. HereTx = exp(—m|pol|) plays the role of
the Kondo temperature (we assumed here a lpgg@therwiseTx has a different functional
dependence) and is shorthand notation for (#//Tx). Hence, in case (i) the zero-field
susceptibility is finite with logarithmic corrections which are well known for Heisenberg
chains [3]. For case (ii) the impurity magnetization is finite, corresponding to an effective
spinS’ — S, which is weakly coupled to the spin waves in the host (the logarithmic corrections
signal asymptotic freedom). Finally, for case (iii) the impurity spin is overcompensated,
giving rise to critical (non-Fermi-liquid) behaviour. The susceptibility diverges as a power
law determined by the host spin. F&r= 1 andS’ = 1/2 the divergence is on a logarithmic
scale. The difference between the cases wipgre- 0 and pg # 0 is the changed Kondo
temperature, i.e. the energy scale, and there is no change in the qualitative behaviour [6].
The properties of the three cases are also reflected in the zero-temperature entropy of the
impurity. In a finite field (independent of its magnitude) the entropy vanish&s-at0 in all
three cases. This is, however, different for zero field where we have [6]

S =S Simp(T = H =0) =0
(i) S > S Simp(T = H = 0) = In[2(§' — §) +1] (21)
i)' < S Simp(T = H = 0) = In{sinfr (25’ + 1)/(2S + 2)]/ sinfrr /(25 + 2)]}.

Hence, in case (i) the ground state is a singlet (Luttinger liquid) and the entropy is a continuous
function of H andT. If S > S the zero-field entropy is that of the remaining free sfin; S,
which is consistent with the above results for the magnetization. A small magnetic field lifts
the degeneracy and the entropy vanishes.Sact S the zero-field entropy corresponds to a
fractional spin and the entropy has an essential singularity=atH = 0 (the quantum critical
point). These results are identical to those for phe= 0 case [6].

From the Luttinger properties in case (i) it follows that the Idwspecific heat is
proportional toT. For the undercompensated spin> S (case (ii)) the remaining effective
free spin,S’ — S, gives rise to a Schottky anomaly&t~ H. In case (iii) the quantum critical
point of the overcompensated spin yields power-law dependences as a funcfion of

(i) s’ < Cimp o (T Tg)%@5*2 T Yimp o (T Tg)¥ 2. (22)
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Again the critical exponents depend only on the spin of the host, since it is the host driving the
quantum critical point. Fof = 1 andS’ = 1/2, instead of critical exponents a logarithmic
temperature dependence is obtained:

S = 1/2 andS =1 Cimp X (T/T[() |n(TK/T) TKXimp X |n(T](/T) (23)

Again, the only effect oy is to introduce the Kondo energy scale.

The properties of the impurity in all three cases are closely related to the multi-channel
Kondo problem [9-14]. If on the other hand we consides 1, only the band of &'-strings is
occupied. The properties are then those of a Babujian—Takhtajan chain of 'spitisimpurity
of spin S and rapidity— po, i.e. the roles of the impurity and the host are interchanged.

4. Ground-state properties at finite concentration

The properties of the system change dramatically if the concentration of impurities is finite.
We consider first the zero-field case, which can be solved analytically, and then we present the
numerical results for the system in a finite magnetic field.

4.1. The zero-magnetic-field solution

In zero field the two populated rapidity bands, corresponding to string§-cdirdd 25’-spins,
are completely filled. This means that the two dressed energies are negative for all rapidity
valuesA. The integral equations (15) and (18) can then be solved by Fourier transformation:

A xJ(1—rc) A) = d-0
BN = "2cstan PN 2costan)
o _mde 1 N L 24
€29 (A) = — 2 {Zcosh[r(A — po)]  2coshfr(A + po)] } (24)
¢ 1 1
pas(A) =3 {Zcosh[-r(A ~po]  2c0shit (A + po)] } '

All densities for other string lengths are identically zero. Ees 0 the density of 3'-strings
tends to zero.

Inserting (24) into expression (19) we obtain the zero-field ground-state efgrgiven
by equation (14), and that the magnetization vanishes (the ground state is a singlet) for any
combination ofS andS’. This contrasts with the results for isolated impurities discussed in
the previous section. We have to conclude that the limi¢ O is singular [17]. Below, we
will mainly focus on the overcompensated case, §’e< S, which forc — 0 shows non-
Fermi-liquid behaviour. We discuss this crossover from Fermi-liquid to non-Fermi-liquid in
more detail below.

4.2. Magnetic field dependence

The integral equations (15) and (18) for non-zero magnetic field have to be solved numerically.
Afield H increases the dressed energig@nde,y , so the largeA |-tails are positive and hence
unoccupied. The points at which the dressed energies vanish form the ‘Fermi surface’ of the
model. In zero field the Fermi points lie At= +o00. The dressed energies gradually increase
with H until the bands become unpopulated. For sufficiently sméilist the impurity band is
depopulated at the critical field, and then at the much larger fieldl the band of 3-strings

also becomes empty. For fields larger thgnall spins are aligned and the magnetization is
saturated at the valug /N = (1 — ¢)S +¢S’. H, will be called the saturation field.
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As a concrete example we specialize our analysi$ to 1 andS’ = 1/2, which for the
isolated impurity yields non-Fermi-liquid behaviour. However, for a finite concentration of
impurities the results are similar for other combinationsSaind S’. For pg = 0 the two
energy bands have their minima at= 0. For sufficiently largepy the impurity band has
two minima located roughly aA = £pg. Increasingpy decreases the Kondo temperature
and hence the coupling between the two bands. This is seen as follows: for a gived field
increasingpo makes the impurity band off-resonance with the host rapidities, i.e. the bands
are not populated for the same intervalshof

The numerical solution of the integral equations foe= 0.2 andpy = 2 is shown in
figure 1 for five fields. Curves (a) correspond to the saturation fig)dor which both dressed
energies are positive for all ande,(0) = 0. The system has no spinons and the magnetization
is saturated. Curves (b) refer to a field intermediate betwesnd H,. Hence, the impurity
band is still empty, but the host bandg, is partially filled. Curves (c) represent the dressed
energies at the critical field, for which (£A) = 0 with Ay =~ po being the point of the
minimum of thee;-band. Hence, the impurity band is still empty and the host band is partially
filled. For curves (d) both bands are partially occupied. Finally, curves (e) correspond to zero
field, where both bands are completely filled. Note that the field dependence of the impurity
band is much more pronounced than that of the host band. These results are similar to those
for impurity bands in strongly correlated electron systems [25, 26].

Figure 1. Dressed energy potentials for (A) the impurity band (spinons) and (B) the host band
(two-strings of spinons) for a concentratior= 0.2 of impurities of spinS’ = 1/2 andpp = 2 in

a host of spinS = 1 for several magnetic fields. The spinons have a three-peak structure arising
from the impurity rapiditypo (the strength of the coupling of the impurities to the host) and the
host two-strings. The curves correspond to kg)= 1.087, (b) H = 0.500, (c)H. = 0.273,

(d) H = 0.150 and (e} = 0.0.

The critical and saturation fields as functionscdfor three values ofpg are shown in
figure 2(A). The saturation field decreases linearly with the concentration with a slope that
increases withpg. The critical field H., on the other hand, increases with A larger pg
decreases the coupling of the impurities to the host (reduces the Kondo temperatuife), so
is reduced with growingrg. As ¢ — 0 the dependence df,. on ¢ is non-analytic. This
non-analytic behaviour is a consequence of the overscreening of the impurities, and it is absent
for S’ > S (undercompensated spins; see [17]) where the increalgisflinear inc.

For most case#l,. corresponds to the depletion of the impurity band. In figure 2(A) for
po = 0 the H.- and H;-curves intersect at aboug = 0.18. Forc < ¢q the critical field refers
to the depletion of the;-band, while forc > ¢ first thee,-band is depopulated and then the
spinone;-band atH, is depopulated.
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Figure 2. (A) The saturation fieldd; (dashed curves) and the critical fielf} (solid curves) as
functions of the impurity concentration f§t = 1/2 andS = 1 and three values @%. These are the

two fields at which the rapidity bands become emgfy.depends non-analytically anasc — 0

as a consequence of the quantum critical point of the isolated-impurity limit. (B) Magnetization
as a function of field fos” = 1/2, § = 1, ¢ = 0.2 and for three values qfp. The susceptibility
diverges as the field approachiésor H; from below as a consequence of the one-dimensional van
Hove singularity of the empty bands. The magnetization is saturated for fields large¥ th&or

po = 0 and as a function of field, first the host band is depleted, while for the other two cases first
the impurity band becomes unoccupied. (C) For very small fields the difference of the integration
limits B; — By is independent of the field and depends logarithmically on the concentration.

The magnetization as a function of field is presented in figure 2(B) fer 0.2 and
three values ofpg. The magnetization increases monotonically with increasing field and
vanishes linearly with the field (the susceptibility is finite for a singlet ground staié)-as 0.
The magnetization has cusps at the critical and saturation fields, which arise from the one-
dimensional van Hove singularities of the empty bands. The sloge wérsusH diverges
when the critical fields are approached from below. For fields largeritéine magnetization
is saturated. The curve foip = 0 is somewhat different from the other two curves, because
in this case the host band is depleted before the impurity band. Thé& lepecific heat
is proportional to the temperature, except at the van Hove singularities, where the leading
contribution isocT'Y/2.
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4.3. The small-magnetic-field limit

For sufficiently small magnetic fields each of the dressed eneegieande,gs, has two zeros,
at A = +£Bys andA = £B,g, respectively. These are the integration limits for the integral
equations (15) and (18). The integration limits are, in principle, functions of the field, the
concentration and the impurity rapidity, and tend to infinitylas> 0. The coupled Fredholm
equations can be converted into a sequence of coupled Wiener—Hopf equations, from which it
is found that, asymptotically for large |, the two integral equations for the dressed energies
have driving terms that are proportional to each other. This can also be seen from equation (24),
where the largeA |-tails of the densities and dressed energies are all exponential and hence
proportional to each other. The consequence of this observation is that for small magnetic
fields Bos — Bas is independent off and only a function of andpo. The field is proportional
to exp(—m Bas), SO Bos parametrizes the field.

To obtain B,y — Bys we numerically solve the integral equations (15). Bor= 1/2
andS = 1 the result is displayed in figure 2(C) as a function at)rfor three values opy.
For sufficiently smalk the curves are straight lines all with the same slope. The three curves
can then be scaled onto each other if we @ot- B, versus Inf/co(po)], Whereco(po) is a
scaling constant. We return to this point when we discuss the dressed generalized charges in
the context of finite-size corrections to the ground-state energy.

4.4. Crossover from Fermi-liquid to non-Fermi-liquid behaviour

We have learned that f&f < S, on the one hand, isolated impurities have a quantum critical
point with non-Fermi-liquid properties, while on the other hand, # 0 the ground state is

a singlet. The difference between the two situations is the population ofSth&tring band,

which transforms a one-component Luttinger liquid into one with two components (two kinds
of strings). In this subsection we consider the gradual crossover between the two situations as
a function of a magnetic field.

Consider first equation (18) faf > H, for sufficiently small. In this case the impurity
band is empty, so we have one integral equation of the Fredholm type. The driving term
can be divided into one for the host (proportional(fo— ¢)) and one for the impurities
(proportional toc). Neglecting the(1 — c)-factor the host density is then identical to the
pure SU(2)-invariant Heisenberg host chain. The integral equation for the impurity part is
identical to the one considered in section 3, except for the constant faetdy; /N. Hence,
for H. « H « T the impurities have the same non-Fermi-liquid properties as isolated
impurities, i.e. a susceptibility that increases as the field is lowered.

At H = H. the susceptibility is singular, because of the van Hove singularity of the empty
ezs-band. This band is partially filled fof < H. and yields a two-component Luttinger
liquid. Hence, when the divergence of the susceptibility#ass approached from belowy,
decreases with decreasing field and reaches a finite valde-as0 (the singlet ground state).

In other words, as a function of field the system undergoes a crossover from non-Fermi-liquid
properties forH > H. to Fermi-liquid-like behaviour foH < H,.

5. The excitation spectrum

In this section we derive the spectrum of elementary excitations from the zero-field ground
state. For finitee and H = 0 both bands are completely filled without hole states. A hole
state is obtained by removing one rapidity. To remove the rapiditye.g. corresponding to a
25-string of spin waves, requires the excitation enetgdy,s(Ap) and a physical momentum
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p2s(Ao) given by

Ao
AEz5(Mo) = |e2s(Ao)| p2s(No) = Zﬂ/ dA [p2s(A) + p2sn(A)] (25)

o]

and similarly for excitations within theS2-band. The excitations are all of the hole type, since
the bands are filled.
Using the solutions for the dressed energies and densities derived in section 4.1, we obtain

AEps(Ag) = nJ(1—rc¢)
2s(Ao) = 2 cosh Ag)
p2s(Ao) = 2(1 — ¢) arctanexp(r Ag) |
(26)
wJc wJc
AEz5(No) =

4coshEr (Ao — po)] * 4COShE (Ao + po)]

p2s/(Ao) = carctan{expfr (Ao — po)]} + c arctan{explz (Ao + po)l} .
The range for the physical momentum of the excitations is limited to the inten@lpg <
7(1—c¢) and 0< poy < e, respectively. Note that in zero field the excitations from the host
band do not depend on the impurity rapidjty.

The excitation spectrum is shown in figure 3 foe= 0.2, ' = 1/2, S = 1 and several
values ofpg. While the excitations from the host band are identical to those of the Babujian—
Takhtajan Heisenberg chain rescaled by the facterd the excitations from the impurity
band strongly depend an(<0.5) and the coupling between the host and the impurities, i.e. on
po. For po = 0 the hole excitations from the impurity band again scale with those of the
Heisenberg chain if the energy and momentum are multiplied Bor the Heisenberg chain
without impurities the momentum range in zero fieldrisThis is still the case for the chain
with impurities if the ranges of the two excitations are added together. With increagthg
excitations from the impurity band gradually acquire a two-peak structure, which forgarge
(whenTg is small and the two bands are off-resonance) reduces to a halving of the period.

1.50 [T T T T T T T T T Ty 04 o
126 | (A)—: - B) ]
- ] 03 |- .
1.00 - i . ]

. . Py=0.0
uio7s £ 1 W o2l ]
75 7 02+ —
<] E ] Pl A 0.4 1
0.50 [ - i ]
E E 01 0.8 ]
0.25 [~ = i 2.0 1
000l v Ly v b ool oo VL,
0.0 0.2 0.4 0.6 08 0.0 0.05 0.1 0.15 0.2

P2/TC P1/TC

Figure 3. The energy dispersion for the hole excitations from (A) the host band-str2zngs and
(B) the impurity band of &'-strings forS’ = 1/2, S = 1, ¢ = 0.2 and various values gfo.
Note that the excitations of the host depend neithep®nor onS. The two bands decouple with
increasingpg and for sufficiently largepg the period of the impurity band is halved.

Since the spectrum of elementary excitations of the Babujian—Takhtajan Heisenberg chain
does not depend on the spin, the excitations shown in figure 3 are independeabdt’.
For small momentum transfer the excitation energy is proportional to the momentum, the
proportionality constant being the spin-wave velogityThe spin-wave velocity in zero field
is independent of the spin, o= 7 J/2 for both bands.
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6. Finite-size corrections and correlation functions

In this section we first derive the finite-size corrections to the ground-state energy and then we
use the low-energy excitation spectrum to study the asymptotics of the spin—spin correlation
functions.

6.1. Finite-size effects
The finite size of a ring manifests itself in several ways:

(i) Impurities are important in mesoscopic systems, since their contribution to extensive
gquantities can become large and observable, and may even change the properties.

(i) The finite length of a ring yields persistent currents with oscillation periods given by
interference patterns of the Aharonov—Casher type.

(iii) Finite-size corrections to the energy determine the critical exponents of the asymptotic
dependence at long times and large distances of correlation functions via conformal field
theory [27-30].

To calculate the finite-size corrections to the ground-state energy, i.e. the change of the
energy due to the finite length of the ring, we follow the procedure developed in references [27]
and [31]. We confine ourselves to considering the situation without an applied magnetic field.
The ground-state energy including mesoscopic terms is given by

2
2700 [ 1 .
E=Neo+) ~ [E > Gy AM(‘”:|
l q

2
27 v® 1 B
+ Z v |:Z Z]q(D(q) +19(q))j| _ 1_2+n(1)++n<1) (27)
q

l

wheree, is the ground-state energy density in the thermodynamic liraitdg label the two
bands and can take the value$ and 25, and thev® denote the spin-wave velocities for the
two bands (in zero field they are both equaht®/2). The quantities? are phase shifts of
the Aharonov—Casher type, which could be induced by a radial electric field flux. These phase
shifts are not relevant in the present context (for a discussion see reference [18]) and will be
neglected.

The mesoscopic energy depends on several quantum nunabefs) is the departure of
the number of strings in the bagdrom the equilibrium value D@ is the backward scattering
quantum number, i.e 29 represents the difference of forward- and backward-moving strings
from the equilibrium value. These quantities are sensitive to the parity in each set of rapidities.
Finally, then@* define the low-lying excitations about each of the Fermi points. A&,
n@* and 2D@ always take integer values; henb&’ can be either an integer or a half-integer
depending on the initial conditions.

The quantitieg;, in equation (27) are the dressed generalized charges of the excitations
at the Fermi pointsg;, = & ,(B,). The dressed charges are determined by the following set
of integral equations:

Bas
EL0(A) = 81y — /

—Bag

By
dA" Ky 29(A — A') &25(A)) — f dA" K29 (A — A') & 25 (A)
— By
(28)

where theB, are the Fermi points determined by the zerasgande,y inthe limit H — 0 (see
subsection 4.3). In equation (2%);! denotes the inverse of the matrix of dressed generalized
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charges. The dressed charges describe the interplay of the different Fermi points when rapidities
are added or removed.

The driving terms of equation (28) do not depend@mdpy. Hence, the only dependence
on the physical parameters of the model enters thra&sgh— B,g, which is field independent
but a function ot andpg. Bos parametrizes the magnetic field and tends to infinitifas> 0.
Hence, we may use a plot like figure 2(C) to obtBiy — B, for a givenc andpg. The scaling
of the curves for differenpo-values in the limitH — 0 indicates that the dressed charges as
functions ofc are all similar for the differenpg-parameters.

We solved equation (28) numerically f8r= 1/2 andS = 1 as afunction oB; — Bz inthe
limit of large By, since here we only consider the zero-field case. The four dressed generalized
charges are shown in figure 4(A). From the form of the integral equations it is clearn that
andz,; are always positive, while;, andz,; are negative. A$; — B, — —oo the spectral
weight of the impurity band tends to zero; in this limit — 1, z1» — 0, z2;1 — —0.5 and
720 — 0.5. ForB; — B, — +o00, on the other hand, the spectral weight of the host band
tends to zero, and in this limitiy = —z1> = 1/+/2, 201 — 0 andzy, — 0.722. All of the
limiting values except the latter can be obtained analytically.for B — B, — +oo has to
be determined numerically since the two integral equations do not decouple in that limit.

e 10
Zy1 \ a\
//’——-————_—_— R
———// 22 10 0
61
0.5
1.0 -05 0.; Bo:s 1.0 15 ——J (B)
-1.5 -
Zn 1-B2 0o
Z21

-1.5 -1.0 -0.5 0.0 0.5 1.0 15
B1-B2
05

Figure 4. (A) Dressed generalized charges and (B) critical exponents of the spin—spin correlation
functions forS’ = 1/2 andS = 1 as functions of3; — B.

In terms of the quantum numbers defined above, the momentum of the system is given by

p— ZW” 3 [MO(DD +9D) +a®F —n O], (29)
=12

Equations (27) and (29) define the mesoscopic corrections to the ground-state energy and
momentum of a two-component Luttinger liquid.
6.2. Correlation functions

We now obtain the long-time large-distance asymptotics for the longitudinal and transverse
spin—spin correlation functions for both the impurity and host bands. As usual for gapless
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one-dimensional systems (Luttinger liquids), the correlations fall off as power laws in time
and distance. The critical exponents follow from conformal field theory in combination with
the finite-size excitation spectrum. In terms of the conformal dimensions of a primary field
¢(Q), the excitation energy and momentum are given by

2mv ) 27 v@)

Epe(Q) — Eo = (Agg + Agg) + (Azg + A%)
(30)
2T, _ . _
Pere(Q) — Po = W(Azy — Agg + Ajg — Ag).
Comparing these expressions with equations (27) and (29), we have that
ZA%/ = [Zzs 2sAMPS) — 756 56 AMP S)]
2 det
2
+ [Zzs/,st(ZS) +Zzs',25/D(25’)] } + 2 2S)E
(31)

ZAfs = {Zd t[zzs' 2S’AM( S) _ 22", SAM(ZS)]

2
+ [ZZ&ZSD(ZS) + ZZS,ZS’D(ZS,)] } +2n@9%

where ‘det’ is the determinant of the matrix From an inspection of the discrete Bethe-
ansatzequations it follows that @) = AM©@S) (mod 1) and D@ = AM®@S (mod 1), in
complete analogy to the case of the usual Heisenberg chain.

The asymptotic form of the correlation function for the operator, ) is [28—30]

(p(x, g(0,0) = Z B(Q) exp[—2ix(p2s D + pas D)

(25 )t)—ZA 28’ )t)—ZAZS,, (x IU(ZS)Z,)—2A£S (x + iv(ZS)t)—ZAgS

(32)

where the indexQ refers to the conformal fields contained in the operatoand p,s and
p2s are the Fermi momenta of the two bands. In zero field the two group velocities are
equal, so the fout- andz-dependent factors can be combined into two, apgh2= 7 ¢ and
2p2s =m(l—c).

Consider first the longitudinal spin—spin correlation functions. Since the opefitansl
S, do not flip spinsAM®@) = AM®@S = 0 andD®?" and D?9 are integers. The leading
term corresponds t®?®) = D@9 = 0 and one of the four quantum numberé®)* and
n@9* peing equal to one. The next-to-leading terms involve eithét’ or D% being equal
to one and all other quantum numbers equal to zero. The third-order terms either double the
period of oscillation or produce an interference between the Fermi surfaces of the two bands.
Period doubling involves eitheb®@) or D9 being equal to two and all other quantum
numbers equal to zero. Interference terms arise ff) = D@ = 1 (the sum of periods)
or D@ = —p® = 1 (the difference of periods) and all other quantum numbers equal to
zero. The leading-order, next-to-leading-order and third-order terms yield for the opgrator

x2 — 32 cospr (1 — ¢)x] cogmcx)
S+ 222 TS (k24 p212)0s * By (X2 + v22)0
cos[2r (1 — ¢)x] N coq2mcx)

(x2 + v212)46s s (x2 + v212)%s

coSmx) cospr (1 — 2¢)x]
* (x2 + 2120 e (x2 + v212)b-

X (x — 25 (x +iv

(S;(x,1)S,(0,0) = A

+Cs

(33)
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The exponent8s andds are given by
_ 2 2 _ .2 2
Os = 225,25 + 229 25 O2s' = 255 25+ 255 25 (34)

and are displayed in figure 4(B) f6f = 1/2 andS = 1 as functions oB; — B,. The exponents
of the interference terms are

O = (22525 + 225.25)° + (225725 £ 225 25)°. (35)

An expression analogous to equation (33) holds for the opesatofhe terms included in
equation (33) are allowed by symmetry, but their coefficients could be zero. For instance, it
is not meaningful to have non-zerAy, By andCyg in the S,-correlation function. Similarly,
Ag, Bs andCy should be zero for th§-correlation function.

We consider now the transverse correlation functions. The ope&fathanges the number
of rapidities in the host band by one unit, i2&M? = £1 andD®? = +1/2, while all other
quantum numbers are zero for the leading term of the correlation function:
2x cosfr (1 —c)x/2]

(S:(x,05x(0,0)) = A (x2 + v22)07172

(36)

Similarly, S’ changes the number of rapidities in the impurity band by one unit\é?s) =
+1 andD®" = +1/2, while all other quantum numbers are zero for the leading term:
2x cosprex /2]
(x2 + v2t2)9+1/2'
The transverse correlation functions of the two bands only differ by the periodicity of their
Fermi surface. Here is given by

1 be + 1
T 4det 4
and is shown in figure 4(B) fo$’ = 1/2 andS = 1 as a function oB; — Bs.

(S, (x.1)S,(0,0)) = A (37)

0 O (38)

7. Concluding remarks

We considered the SU(2)-invariant generalization of the Heisenberg chain of $fthe
Babujian—Takhtajan model) with a finite concentratioof impurities of spinS’. The model
is integrable by construction as a function of four parameters, nagnély c and the impurity
rapidity po, which determines the coupling of the impurities to the lattice. We stated the Bethe-
ansatzequations diagonalizing the model and derived the thermodynamic and ground-state
integral equations.

In the isolated-impurity limit we have to distinguish three different situations:

() If &’ = Sthe impurity adds just another link to the chain and its [Byaroperties are those

of a Luttinger liquid, i.e. the susceptibility is finite and the specific heat is proportional
toT.

(i) If §” > S the impurity is undercompensated by the lattice spins, leaving a remnant spin
of §' —§.

(i) For S’ < S the impurity spin is overcompensated giving rise to a quantum critical point
and power-law dependences as functions of field and temperature in the susceptibility and
the specific heat.

The coupling parameter, introduces an energy scale analogous to the Kondo temperature.
The three cases discussed above are in complete analogy with the multi-channel Kondo
problem. It has been argued [16] that the this integrable isolated-impurity model corresponds
to a non-generic multi-critical fixed point.
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A finite concentration of impurities dramatically changes the physicalfoproperties
of the model forS” # S. The ground state is a singlet in all cases and theTofixed point
is given by a two-component Luttinger liquid. As a function of the magnetic field, the two
rapidity bands are gradually depleted. For sméilist the impurity band is emptied at a critical
field H. and then the host rapidity band is emptied at the saturationfigldcor H > H; all
of the spins are aligned and the ground state is ferromagnetic.

ForS # SandH. < H < Tk, i.e. for small impurity concentrations, only the host
rapidity band is populated (strings of lengtl)2and the properties of the impurities are the
same as those of isolated impurities multiplied by the concentratio. ¥ S the system
then approaches the quantum critical point as the field is reduced (power-law behaviour, unless
S’ = 1/2 andS = 1, where the dependence is logarithmic) uftilis reached. In this regime
the impurities are exclusively driven by the host band. Ftthe impurity band becomes
partially occupied and this drastically changes the properties. The system is now a two-
component Luttinger liquid. AH, the one-dimensional van Hove singularity of the impurity
band gives rise to a square-root divergence in the susceptibiliff.ds approached from
below. As the field is lowered further the susceptibility approaches a constant. Hence, as the
field is reduced througlt/, the system undergoes a crossover from non-Fermi behaviour to
Fermi-liquid-like behaviour.

We studied the zero-field spectrum of elementary excitations for the two-band system.
Each of the excitations is of the hole type and corresponds to removing one rapidity from one
of the bands. The energy and momentum of the excitations of the host band are independent
of pg and are just those of the standard Heisenberg chain multiplied-y The spectrum of
the impurity band strongly depends on the coupling paramseteFor smallp, it scales (the
scaling factor is the concentration) with the excitations of the ordinary Heisenberg chain. For
large po, on the other hand, the period of the spectrum is halved. In zero field the two bands
have the same group velocity for the spin waves. This changes if the field is non-zero.

The finite-size corrections to the ground-state energy were obtained in section 6. In
zero field they correspond to a two-component Luttinger liquid with the Fermi points at
|A| — oo. Thelow-energy excitations are described in terms of quantum numbers representing
the changes in the populations of the bands, the backward-scattering quantum numbers and
excitations about the four Fermi points. These excitations and the expression for the momentum
in terms of the quantum numbers yield the conformal dimensions of the primary fields and
hence the critical exponents for the asymptotics of the correlation functions. We studied
the longitudinal and transverse spin—spin correlation functions for each band. The critical
exponents depend anand pg through the difference of the integration limiBss: — Bos.

Terms oscillating as a function of the distance are obtained. The periodicities depend on the
Fermi momenta of the two bands, i.e. on the impurity concentration. Third-order terms in the
longitudinal correlation function give rise to period doubling and interference of the two Fermi
surfaces.

In summary, we studied this interesting model in detail, since it is exactly soluble and it
shows explicitly the crossover from non-Fermi-liquid to Fermi-liquid behaviour as a function
of ¢ and pg, which are two model parameters that can be varied continuously. In section 2
we mentioned that the model is integrable for an arbitrary distribution of impurity rapidities.

A distribution of pg induces a distribution of Kondo temperatures, which may also give rise

to non-Fermi-liquid behaviour [32]. Distributions of Kondo temperatures in the context of
integrable systems have been discussed in references [25, 33]. For the present model non-
Fermi-liquid behaviour can be obtained even in the two-component Luttinger-liquid regime if
the distribution ofpg has a tail tending to infinity. Large values gf yield small values oy,

i.e. small Fermi energies, and hence eventually a quantum critical pdintati = 0.
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Appendix. The impurity Hamiltonian

The lattice Hamiltonian can be obtained as the logarithmic derivative of the transfer matrix

(5); see equation (6). For the single-impurity model the transfer matrix consigts-ofl

host scattering matrices and one scattering matrix for the host spins and the impurity. The
former gives rise to the Hamiltonian of the Babujian—Takhtajan Heisenberg chain [3], where

we denote ag7; ;.1 the interaction for the link between the sitesndi + 1:

N-1
H =" Hm.
i=1

We now assume that the impurity is at the giteBy construction, the impurity then interacts
with the neighbouring sites = 1 andi = N — 1. The general structure of the impurity
Hamiltonian is now of the following form:

Hipp = f1(S', po) (HI(\IS—,)l,N + Hlslsl) + {Hl(\ls—,)l.N’ H}E]S:E})
’ : ’ (8" (")
+ £, po) Hy-11 + 1 fo(S's po) [ (™ + HISD), Hy-11 ] (A1)

wheref1(S’, po) andf2(S’, po) are even functions gy, while f3(S’, po) is an odd function of

po- Here the square (curly) brackets denote a commutator (anticommutator). The Hamiltonian
Hy{ (and similarly Hy", ) is @ polynomial of order mi(s. 25') of (Sy - S1); e.g. for

S’ = 1/2 (parametrized by Pauli matrices) we have

H1<Vf’l=1/z) = a(po) +b(po)(on - S1). (A2)

The interaction Hamiltonian (A.1) involves the spins of the three sites involved. Due to the
impurity rapidity po being non-zero, the impurity Hamiltonian breaks the time-reveargal

and parity(P) symmetries separately, but their proddtP is conserved. This manifests
itself in a non-zero total quasi-momentum of the system. Note that, by construction, from
the integrability condition the impurity involves only forward scattering (unitary transmission)
and that the reflected wave has zero amplitude. This makes the model non-generic. It is well
known that non-Fermi-liquid properties can only arise in special non-generic situations, while
normally a one-dimensional system is a Luttinger liquid.
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